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Abstract

We present numerical results for the spatiotemporal evolution of a wave packet in quartic Klein-Gordon (KG) and disordered nonlinear Schrodinger (DNLS) chains,
having equivalent linear parts. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson
localization). In the presence of nonlinearity we find three different dynamical behaviors depending on the relation of the nonlinear frequency shift o (which 1s
proportional to the system's nonlinearity) with the average spacing A1 of eigenfrequencies and the spectrum width A (A4 <A) of the linear system. The dynamics for
small nonlinearities (6 < A4)is characterized by localization as a transient, with subsequent subdiffusion (regime I). For intermediate values of the nonlinearity, such that
(A1 < & < A) the wave packets exhibit immediate subdiffusion (regime II). In this case, the second moment m , and the participation number P increase in time following
the power laws m, ~ 1%, P ~ t*?. We find a=1/3. Finally, for even higher nonlinearities (6 > 4) a large part of the wave packet is selftrapped, while the rest subdiffuses
(regime III). In this case P remains practically constant, while m, ~ ¢*.
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