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Abstract

We present numerical results for the spatiotemporal evolution of a wave packet in quartic Klein-Gordon (KG) and disordered nonlinear Schrödinger (DNLS) chains, 

having equivalent linear parts. In the absence of nonlinearity all eigenstates are spatially localized with an upper bound on the localization length (Anderson 

localization). In the presence of nonlinearity we find three different dynamical behaviors depending on the relation of the nonlinear frequency shift δ (which is 

proportional to the system's nonlinearity) with the average spacing  of eigenfrequencies and the spectrum width ∆ of the linear system. The dynamics for 

small nonlinearities  is characterized by localization as a transient, with subsequent subdiffusion (regime I). For intermediate values of the nonlinearity, such that

the wave packets exhibit immediate subdiffusion (regime II). In this case, the second moment m2 and the participation number P increase in time following 

the power laws m2 ~ t
α, P ~ tα/2. We find α=1/3. Finally, for even higher nonlinearities (δ > ∆) a large part of the wave packet is selftrapped, while the rest subdiffuses

(regime III). In this case P remains practically constant, while m2 ~ t
α.

λ∆ ( )λ∆ < ∆
( )δ λ< ∆

( )λ δ∆ < < ∆

We study [1] two models of one-dimensional lattices: 

The The quarticquartic Klein Klein –– Gordon (KG) modelGordon (KG) model

where ul and pl are respectively the generalized coordinates and momenta, l is the lattice site index, W

is the disorder strength, E the total energy and typically N=1000. 

The disordered discrete nonlinear SchrThe disordered discrete nonlinear Schröödinger (DNLS) equationdinger (DNLS) equation

(see also poster 14)(see also poster 14)

with complex variables ψl. The random on-site energies εl are chosen uniformly from  

Linear case of the KG model (neglecting the term ul
4)

Ansatz: ul=Al exp(iωt)

Eigenvalue problem: λAl = εlAl - (Al+1 + Al-1) with

Unitary eigenvectors (normal modes - NMs) Aν,l are ordered according to their center-of-norm 

coordinate:

All eigenstates are localized (Anderson localization) having a localization length which is bounded 

from above.

Scales

, width of the squared frequency spectrum:

Localization volume of eigenstate:

Average spacing of squared eigenfrequencies of NMs within the range of a localization volume: 

For small values of W we have

Nonlinearity induced squared frequency shift of a single site oscillator

The relation of the two scales                 with the nonlinear frequency shift δl determines the 

packet evolution.

Distribution characterization

We consider normalized energy distributions in normal mode (NM) space                        with

where Aν is the amplitude of the νth NM.

Second moment:                                     with quantifies the wave packet's degree of 

spreading.

Participation number:                                  measures the number of stronger excited modes in zν.

Compactness index:                         measures the sparseness of wave packets.

The KG chain was integrated with the help of a symplectic integrator of order O(τ4) with respect to 

the integration time step τ, namely the SABA2 integrator with corrector (SABA2C) [2].
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Schematic representation of the three different regimes of spreading for the KG model in the 

parameter space of disorder strength W and of the nonlinear  frequency shift δ at initial time t=0. For 

each regime the behavior of the second moment m2 (blue solid curves) and of the participation 

number P (red dashed curves) are shown schematically. The regions above the horizontal dashed lines 

(large nonlinearities) and to the right of the vertical dashed lines (large disorder strengths) correspond 

to parameter values where diffusion is not detected numerically. Numerical examples from the 

different regions are also presented.

Regime I: Small values of nonlinearity.

Frequency shift is less than the average spacing of 

interacting modes. Localization as a transient (like in the 

linear case), with subsequent subdiffusion.

Regime II: Intermediate values of nonlinearity.

Resonance overlap may happen immediately. Immediate 

subdiffusion [3].

Regime III: Big nonlinearities. δl > ∆K

Frequency shift exceeds the spectrum width. Some 

frequencies of NMs are tuned out of resonances with the 

NM spectrum, leading to selftrapping, while a small part of 

the wave packet subdiffuses [4].

Subdiffusion:

Assuming that the spreading is due to heating of the cold 

exterior, induced by the chaoticity of the wave packet, we 

theoretically predict α=1/3 [1].

E = 0.05, 0.4, 1.5 - W = 4. Single site excitations
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The detrapping

time increases with 

increasing W.

The fraction of the 

wave packet that 

spreads decreases 

with increasing 

nonlinearity. 
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Nonlocal excitations of the 

KG chain corresponding to 

initial homogeneous 

distributions of energy E=0.4 

over L neighboring sites. m2

versus time in log-log plots for 

L=1, 9, 19, 29 and 39 sites.

slope 1/3

Evolution of m2 versus time in log-

log plots. Single site excitation in 

the intermediate regime II for the 

KG model corresponds to the 

black curve.  The wave packet 

after td=10
3, 104, 105, 106 time 

units (t.u.) is registered and 

relaunched as initial distribution.

The three different regimes 

for single mode excitations

of the KG model. Inset: the 

compactness index ζ for the 

regime II case.


